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Abstract Text mining and information retrieval in large
collections of scientific literature require automated process-
ing systems that analyse the documents’ content. However,
the layout of scientific articles is highly varying across pub-
lishers, and common digital document formats are optimised
for presentation, but lack structural information. To over-
come these challenges, we have developed a processing
pipeline that analyses the structure a PDF document using
a number of unsupervised machine learning techniques and
heuristics. Apart from the meta-data extraction, which we
reused from previous work, our system uses only information
available from the current document and does not require any
pre-trained model. First, contiguous text blocks are extracted
from the raw character stream. Next, we determine geomet-
rical relations between these blocks, which, together with
geometrical and font information, are then used categorize
the blocks into different classes. Based on this resulting log-
ical structure we finally extract the body text and the table
of contents of a scientific article. We separately evaluate the
individual stages of our pipeline on a number of different
datasets and compare it with other document structure analy-
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sis approaches. We show that it outperforms a state-of-the-art
system in terms of the quality of the extracted body text and
table of contents. Our unsupervised approach could provide
a basis for advanced digital library scenarios that involve
diverse and dynamic corpora.

Keywords Document structure analysis ·
Machine learning · Clustering · PDF extraction ·
Text mining

1 Introduction

Managing collections of scientific literature in an automated
manner becomes an increasingly important aspect of the daily
work of researchers as well as librarians, since the growth of
the global volume of scientific literature reaches unprece-
dented levels. In recent years a number of social research
networks, such as Mendeley1, CiteULike2 or CiteSeer3 have
emerged that enable users to collect scientific articles and to
exchange and discuss them with colleagues.

One important aspect of such systems is the extraction of
meta-data, such as title, authors, journal, year, pages, etc.,
to ease the organisation of scientific literature. But also the
automatic extraction of the body text and the table of contents
of a given article is of interest for advanced browsing and
searching documents in digital libraries. Furthermore, the
extraction of named entities and facts contained in the body
text and tables is the basis for more complex information
retrieval scenarios.

1 http://www.mendeley.com
2 http://www.citeulike.org
3 http://citeseerx.ist.psu.edu

123

Author's personal copy

http://www.mendeley.com
http://www.citeulike.org
http://citeseerx.ist.psu.edu


84 S. Klampfl et al.

An important prerequisite for all of these tasks is the analy-
sis of the document structure, which is commonly distin-
guished into a physical or logical layout [22]. The physical
layout of a document refers to its hierarchical organisation
into pages, columns, paragraphs, lines, words, and so on,
whereas the logical layout consists of a categorization of doc-
ument parts into meta-data elements, sections, tables, figures,
etc. There are two main challenges that need to be tackled:
(i) the reliable extraction of text from digital documents and
(ii) the large variety of layouts across different journals and
proceedings from different fields. The first challenge is not as
trivial as it may sound; the portable document format (PDF),
the most common format for scientific literature today, is
optimised for presentation, but lacks structural information.
It only contains information about individual characters and
their position on the page, and this information might addi-
tionally be noisy, so intelligent algorithms are required that
extract words with correct boundaries in the right order and
group these words to lines and contiguous text blocks, which
might then be categorized into different types of document
parts. Examples for the second challenge are that scientific
articles may be arranged in a single column or multiple col-
umn format, and that individual elements may appear with
different font sizes and weights.

Here we describe a processing pipeline that performs both
physical and logical layout analysis from a scientific article in
PDF format and uses this information to extract its body text
and table of contents. In order to deal with the above chal-
lenges we exploit the flexibility provided by unsupervised
machine learning algorithms. A demonstration of the sys-
tem can be accessed online4, and the source code is available
under an open source license5.

The workflow of our pipeline can be decomposed into
individual steps: The first step builds upon the output of the
PDFBox6 library and extracts blocks of contiguous text from
the raw PDF file (Sect. 3). This block extraction employs
a stack of alternating clustering algorithms to iteratively
connect individual characters to words, lines, and blocks.
Second, two geometrical relations between text blocks are
extracted via graph-based techniques: the reading order and
the block neighborhood (Sect. 4). Third, the blocks are cat-
egorized into different logical labels based on their bound-
ing boxes and font information (Sect. 5). This categorization
stage is based on a combination of clustering and heuris-
tics and also makes use of the geometrical relations above.
Finally, we extract the body text, consisting of the section
headings and the main text, and use another clustering tech-
nique to recreate the table of contents as a tree with the section
headings as nodes (Sect. 6).

4 http://knowminer.at:8080/code-demo/index.html
5 https://www.knowminer.at/svn/opensource/projects/code/trunk
6 http://pdfbox.apache.org/

Both the physical (the extraction of words, lines, and
blocks) and logical layout analysis (the categorization of
blocks), as well as the extraction of the body text and the
table of contents work completely unsupervised and model-
free and use only information provided by the current doc-
ument. In order to obtain a complete processing system
of scholarly articles we also included the categorization of
meta-data blocks, which we reused from previous work [13].
This approach utilizes a pre-trained supervised classifica-
tion model, but is completely independent from the rest of
the system and only added for the sake of completeness.
The unsupervised nature sets our approach apart from a
number of related studies that employ supervised classifi-
cation methods (e.g., [4,20,25]). A performance compar-
ison shows that for a set of articles from the biomedical
domain we outperform the approach in [20] in our tasks
(Sect. 7).

2 Related work

Document structure analysis has been a well-studied research
problem for a quite some time (see [22] for a review). Early
work approached the problem with mostly rule-based sys-
tems that operated on scanned document images or the out-
put of OCR. Back then, discovering structure within these
documents relied on image processing methods in combi-
nation with OCR, such as the XY-cut algorithm [23,24] or
the Docstrum algorithm [10] (see [27] for an overview). The
former recursively partitions the page image horizontally or
vertically at the widest empty rectangles or “valleys”. In con-
trast to this top-down procedure the Docstrum algorithm finds
blocks of contiguous text in a bottom-up manner by finding
the nearest neighbors of characters. This approach is very
similar to our block extraction algorithm in that it also itera-
tively connects characters to lines and blocks.

With the advent of PDF as the dominating format for sci-
entific articles, more and more documents were being origi-
nally produced in digital form. Many off-the-shelf tools, such
as PDFBox, iText7, JPod8, or Poppler9, are able to extract
the raw character stream from a PDF document, yet fur-
ther processing is necessary since the extracted characters
might not be in the correct order, or interrupted by deco-
rations (headers, footers, page numbers) or floating objects
(images, tables, captions).

The generic extraction of contiguous text blocks from
PDF files has usually been tackled by rule-based approaches.
For example, a recent algorithm presented in [26] merges

7 http://itextpdf.com/
8 http://opensource.intarsys.de/home/en/index.php?n=OpenSource.
JPod
9 http://poppler.freedesktop.org
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words to lines and blocks depending on thresholds estimated
from the distributions of word and line distances across each
page, while the work of [28] uses a modified Docstrum
algorithm to perform block extraction. In contrast to these
methods we use clustering to merge characters to words and
blocks.

A number of recent articles also tackled the analysis of the
logical document structure of PDF files. The aforementioned
paper [26] describes an open source system for analysing
PDF publications in the biomedical domain. This system uses
heuristics to extract text blocks from the PDF and a rule-based
method to classify these blocks into “rhetorical” categories.
This categorization stage achieves a very good overall per-
formance, but requires the user to specify a separate rules file
for every different journal layout, which contains for every
block class the necessary conditions on layout and format-
ting. The authors also evaluate the main text flow, but do not
detail any efforts in determining the reading order.

The authors of [9] present a comprehensive system for the
structure extraction of PDF books, which is used within a
commercial e-book software. They perform a categorization
of text blocks through a combination of heuristics, clustering,
and supervised learning. Their approach is rather similar to
ours, in particular, we build upon the same decoration detec-
tion method [16]. They calculate the reading order of blocks
by computing the optimal matching in a bipartite graph, using
not only positional information, but also the rendering order
and the text content of blocks. Furthermore, they extract the
document hierarchy from the book’s table of contents section
in a rule-based manner.

Another document processing system, DOMINUS [7,8],
also intensively applies machine learning in multiple stages,
for example, to the extraction of text blocks and to the catego-
rization of meta-data. Among the techniques employed are
Markov logic networks and inductive logic programming,
which aim at the automatic generation of rules or theories
from a number of examples. These rules control whether
document objects are merged or split, and how they are cate-
gorised. The main advantage of these methods in the context
of digital libraries is their incremental nature that allows them
to adapt to novel observations without the need to retrain a
model in a batch manner.

Other work targeted the extraction of certain aspects of
PDF documents, such as meta-data [12] or tables [19]. A
popular supervised learning method for structure analysis are
conditional random fields (CRFs) [25]. One example is the
ParsCit system [4], which uses a combination of heuristics
and CRFs for reference parsing. A related system is Sect-
Label [20], which builds upon the feature sets defined for
ParsCit to detect the logical structure of whole scientific doc-
uments and which categorizes the individual lines of a raw
input text file. We use this system for comparison in our eval-
uation (Sect. 7).

3 Extracting contiguous text blocks

The first part of our processing pipeline builds upon the out-
put of the PDFBox library and consists of the unsupervised
extraction of words, lines, and contiguous text blocks from
the raw characters. The output of PDFBox is a list of char-
acters, their bounding boxes (x and y position on the page,
as well as their width and height), and information about
their font. For the conversion to plain text PDFBox also uses
mechanisms for detecting word, line, and paragraph bound-
aries, which are based on simple heuristics depending on
the relative position of neighboring characters. However, we
decided to build our own generic text block extractor and
did not reuse existing approaches provided by PDF parsing
libraries, mainly because we want to leave open the possi-
bility to apply our pipeline also to other input formats, for
example the output of OCR software. Another reason for
not using PDFBox for the extraction of text blocks is that it
does not provide any geometric information about these com-
pound objects, which we need at later stages in our pipeline.
It might also be desirable to extend our block extractor by
incorporating font information or special rules such as the
splitting of words at superscripts or subscripts.

The main challenge in the extraction of text blocks is that
the information provided by PDFBox might be unreliable:
for example, height and width information might be slightly
wrong, or information about the font of some characters
might be missing. We, therefore, require algorithms which
are flexible enough to deal at the same time with both this
noisy data and the variety of layouts of scientific publications.

Here, we chose methods from unsupervised machine
learning, in particular clustering, to solve this task. More
precisely, we used a sequence of Merge and Split steps to
iteratively combine individual characters to words, lines, and
blocks of text in a bottom-up manner (Fig. 1). Each Merge
step is implemented by hierarchical agglomerative clustering

Fig. 1 The stack of alternating clustering algorithms used for extract-
ing text blocks from a PDF in a bottom-up manner. The Merge steps use
hierarchical agglomerative clustering (HAC); in the Split steps standard
k-means clustering is employed
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Fig. 2 Examples of extracted block relations. Both panels show the
same document page with the extracted text blocks. a The reading order
is a permutation of the blocks on a page in which they are supposed to
be read by humans. Here, the reading order is determined for all blocks
on the page, in a later stage it is post-processed to contain only the body
text. b The block neighborhood indicates the nearest neighbors in each
of the directions top, bottom, left, and right

(HAC) with Euclidean distance measure and single linkage.
In the first Merge step individual characters are merged to
words: pairs of characters with increasing distance to each
other are combined into clusters, until a maximum distance
threshold is reached. Since the resulting clusters of charac-
ters might now encompass multiple words, a Split step is
incorporated in the form of standard k-means clustering on
the horizontal distances between characters (k = 2). Ide-
ally, this partitions the spaces between characters into spaces
between words and spaces within words, yielding the final set
of words. This Split step can also be understood as an outlier
detection which removes too large inter-character distances
from the words obtained in the Merge step.

Another pair of Merge and Split steps was used to combine
words to lines and lines to blocks. First, words are merged to
lines by combining pairs of words with increasing Euclidean
distance to each other. This typically yields lines spanning
multiple columns, which is resolved in the Split step that sep-
arates word spaces within columns from inter-column spaces.
Finally, lines are merged to blocks, again by first combining
them until a maximum distance threshold is reached and then
by splitting the resulting clusters at large vertical distances.
Examples of extracted text blocks are shown in Fig. 2.

4 Extracting relations between text blocks

We consider these blocks of contiguous text extracted in the
previous section as the basic elements of a scientific docu-
ment. In the next step of our processing pipeline we extract
two geometrical relations between the text blocks on a page

that serve as additional information in the categorization
stage. The first relation is the reading order, the order in
which blocks on a page are supposed to be read by humans,
and the second is a simple geometrical neighborhood rela-
tion.

4.1 Reading order

In Western culture and for most scientific documents the read-
ing order is column-wise, i.e., text is read from top to bottom
in columns, which are then read from left to right. Detect-
ing the reading order of text blocks is a non-trivial problem,
since the text flow might be interrupted by figures and tables
and their captions spanning multiple columns. Additionally,
text blocks inside figures and tables, as well as footnotes and
decorations such as page numbers or headings, are often not
aligned to these columns.

The reading order on a given page is defined as a specific
permutation of all text blocks on that page. We first deter-
mine the reading order of all blocks on the page, regardless
of whether their content belongs to the main text of the doc-
ument. This information is later used for the categorization
of blocks. Afterwards the reading order is postprocessed to
retain only those blocks which belong to the body text of the
document.

We follow the approach of Aiello et al. [1], who defined a
set of binary relations for intervals in X and Y direction that
allow a certain amount of tolerance for the coordinate values.
In total there are 13 relations in both X and Y directions, and
for each pair of two-dimensional bounding boxes exactly one
X relation and exactly one Y relation is true. This tolerance is
implemented by a parameter T ; if two coordinates are closer
than T they are considered equal. This flexibility is necessary
because due to the inherent noise in the PDF extraction text
blocks in the same column might not be exactly aligned (here
we choose T = 5). Aiello et al. then defined the BeforeIn-
Reading relation as a Boolean combination of binary rela-
tions for intervals in X and Y directions, which states for
any pair of bounding boxes whether the first one occurs at
some point (not necessarily immediately) before the other in
a column-wise reading order (see Figure 5 in [1] for the exact
definition).

In addition to [1], we also define the BeforeInRendering
relation that tells whether a block is rendered at some time
before another block in the PDF. We incorporate both rela-
tions into a single partial ordering of blocks by specifying
a directed graph with an edge between every pair of blocks
for which at least one of the two relations hold. We then per-
form topological sort on this graph by sorting the nodes by
the number of outgoing edges in descending order; the first
node in this sorted list is the first node in the reading order on
that page. We remove that node and all edges connecting this
node, resort the nodes by the number of remaining outgoing
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edges, and select the next node for the reading order. This
is repeated until all nodes of the graph have been removed,
yielding a permutation of the blocks on the page as the read-
ing order.

Figure 2a shows an example document page with the
extracted reading order of all blocks on that page. It also
shows an example where the rendering order is relevant.
Based on geometrical information only the table on the bot-
tom left of the page would be placed in the reading order
between the text blocks of the left and the right columns.
But since the table is rendered separately from the main text
on that page, utilizing this information results in the more
convenient placement at the end of this page.

The presented method for detecting the reading order dif-
fers from the approach in [1] in some aspects. First, we did
not use their special topological sort variant for transitive
directed graphs because we found that even the BeforeIn-
Reading relation alone does not necessarily yield transitive
graphs.10 We, therefore, use the simplified topological sort
variant described above. Second, we also report only one
reading order even when there are multiple equally good
ones possible. More sophisticated methods for reading order
detection have been defined [9,21], but we found that our sim-
plifications yield satisfying results for scientific documents
and once the reading order is restricted to blocks containing
the main document text in a later stage.

4.2 Block neighborhood

The second geometrical relation between blocks that we
extract as a preprocessing step is the block neighborhood.
Examples where this relation is useful include headings,
which should be above another main text block, or tables
and figures, which should be neighbors to a caption block.
We employ a simple straightforward algorithm that searches
for the nearest neighbor of each block on the page in each
of the four main directions, viz., top, bottom, left, and right.
This yields a directed neighborhood graph of blocks on the
page, since this relation is not necessarily symmetric (e.g., a
heading block in the left column that is shorter than the main
text width might have a text block in the right column as its
nearest neighbor to its right, however, the leftmost neighbor
to that block is another text block in the left column). An
example page with extracted block neighborhood relations
is shown in Fig. 2b.

For our setup, we found this neighborhood relation more
usable than using a Voronoi diagram computed for the centres

10 Consider a page with four text blocks arranged in two columns (two
blocks in each column) and in the middle of the page there is another
block spanning both columns. Then the top right block is before the
middle block in the reading order, the middle block before the bottom
left block, but the bottom left block before the top right block.

of the blocks (as in [1]) because the latter often results in
blocks being connected that are quite distant to each other.
Especially small blocks like page numbers or short headings
tend to share edges with more distant blocks because of the
horizontal offset of their centers, but that might depend on
the granularity of the text block extraction stage.

5 Categorization of text blocks

The categorization of text blocks is implemented as a sequen-
tial pipeline of detectors each of which labels a specific type
of block: decorations (such as page numbers, headers, and
footers), figure and table captions, main text, section head-
ings, sparse blocks, and tables. Each of these detectors is
completely model-free and unsupervised. We derive the cat-
egories only from information provided by the current doc-
ument: they only use the labels given by previous detectors,
the geometric information of the text blocks, their content
including font information, as well as the block relations
extracted before and described in the previous section. For
the sake of completeness we also added a meta-data detector,
which is based on previous work [13] and uses a pre-trained
supervised classification model, but is completely indepen-
dent from the rest of the system.

5.1 Decorations

Many digital documents have archival information such as
author names, publication titles, page numbers, and release
dates printed repeatedly at the border of each page. Most
prominently this content is placed inside headers or footers,
but sometimes also at the left or right edge of the page. We
refer to text blocks containing this type of information as
decoration blocks.

We adopt the work in [16], which is based on associating
top and bottom lines across neighboring pages based on both
their content and their position on the page. This is considered
one of the standard header/footer detection methods [9]; other
work relies upon the presence of specific visual cues such as
horizontal lines [15], which is not the case for many of the
numerous layouts used for typesetting scientific articles.

We use a slightly modified variant of the approach in [16]
that is applicable to text blocks instead of lines. The block
extraction stage does not necessarily extract single header
and footer lines; rather there are usually individual blocks
for the individual elements such as the page number and
the journal. We proceed as follows. First, for each page, we
sort all blocks on the page in four different orders: from
top to bottom (based on the minimum y coordinate), from
bottom to top (maximum y coordinate), from left to right
(minimum x coordinate), and from right to left (maximum
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x coordinate). Separately for each ordering we compute the
following similarity score for each of the first N blocks:

Score(B)

= max
i=1,...,N

{
1

2

(
Similarity(B, Bn,i ) + Similarity(B, Bp,i )

)}
,

(1)

where Bn,i and Bp,i are the i-th blocks in the same order-
ing on the next and previous page, respectively. These rela-
tions are circular, i.e., the first page is next to the last page. If
the document has more than three pages, we compare blocks
on the next or previous page with an even or odd number,
depending on whether the current page number is even or
odd, to account for cases with a two-sided layout.

The similarity of two blocks in (1) is measured both geo-
metrically and based on their content,

Similarity(B1, B2)

= ContentSimilarity(B1, B2) ∗ GeomSimilarity(B1, B2).

(2)

This similarity score is a value in the range [0, 1] and
given by the product between the content and the geometric
similarity. The former is calculated from the normalized edit
distance between the two content strings, where digits are
replaced with “@” chars. A content similarity of 1 is reached
when both strings are exactly equal. The geometric similarity
is the area of the intersection between the two bounding box
rectangles divided by the larger of the two bounding boxes.

A block is labelled as Decoration if its score exceeds some
predefined threshold �score. Here, we choose N = 5 and
�score = 0.25. The relatively low threshold allows for some
noise in the block extraction stage, for example, on different
pages of the same document headers might be extracted as
a single or multiple blocks. Examples of blocks labelled as
decorations are shown as red blocks in Fig. 4, at the top and
bottom of the example pages.

5.2 Captions

Captions are text blocks usually located directly above or
below a figure or table explaining its contents. We first detect
candidates for caption blocks by simply checking whether its
first word equals one of certain predefined keywords (viz.,
“Table”, “Tab”, “Tab.”, “Figure”, “Fig”, “Fig.”) and the sec-
ond word contains a number (optionally followed by a punc-
tuation, such as “:” or “.”). This simple heuristic has been
found sufficient for previous work [9,19].

The caption candidates should now contain not only the
true captions, but also blocks from the main text that acci-
dentally start with one of the keywords (e.g., “Table 1 shows
that...”). In order to remove these spurious captions, we

analysed the formatting of the candidates. For each block we
determined the font size and the optional punctuation char-
acter and removed each block that does not conform to the
majority values of these features across all candidate blocks.

Examples of categorized captions can be seen as cyan
blocks in Fig. 4.

5.3 Main text

The main text of a scientific document is typically organised
into one or multiple columns, structured into sections, and
might be interleaved with tables or figures. Here, we aim to
detect to all blocks containing the main text of the document
apart from the section headings, which are detected in the
next section.

The main characteristic that we exploit here is that main
text blocks share the same alignment and formatting (cf., blue
blocks in Fig. 4). More precisely, we identified the following
properties of text blocks containing the main text of most
scientific articles:

(i) They are left-aligned to a limited number of x coordi-
nates (typically the number of columns)

(ii) They have a similar width (if the text is justified, the
width is virtually identical)

(iii) The font of the majority of characters inside the block
is the same for all main text blocks, and

(iv) The majority of lines in the document belong to the main
text.

In order to capture the similarities expressed by properties
(i) and (ii), we applied hierarchical agglomerative clustering
(HAC) on all blocks of a document in the two-dimensional
feature space defined by the left x coordinate and the width of
the blocks. As inter-cluster distance we used “single link”; as
the distance between two blocks we used standard Euclidean
distance; however, for two blocks with a different majority
font we set the distance to positive infinity. This accounts for
property (iii) and basically ensures that such pairs of blocks
end up in different clusters, or, equivalently, all blocks inside
one cluster share the same majority font.

Figure 3a shows all text blocks of a typical scientific article
with a two-column layout in the two-dimensional feature
space used for clustering. The desired main text is shown as
circles, forming two clusters, one for each column. Note that
here multiple blocks overlap each other. This emphasizes the
need for a distance-based clustering algorithm such as HAC,
as opposed to, say, k-means, which would not be able to
separate main text blocks from other blocks close by.

HAC merges blocks bottom-up with decreasing similarity
and stops once a distance threshold is reached. We chose 10
as the distance threshold; it should be large enough to allow
for some variability for the alignment of blocks inside a col-
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a

b

Fig. 3 a All text blocks of a typical scientific article represented in the
two-dimensional feature space spanned by their minimum x-coordinate
and their width. Each cross represents one text block; blocks categorised
as main text are surrounded by a circle. Note that multiple text blocks
are on top of each other. b Distribution of cluster sizes resulting from
HAC, measured as the number of lines in all blocks of that cluster in
descending order. The vertical dashed line indicates a cut defined by
a large change in cluster size. All blocks in the clusters to the left are
labelled as main text

umn, but small enough not to merge blocks across columns or
very short blocks. In the next step we sort the resulting clus-
ters by their total size in lines in decreasing order, such that

according to property (iv), the largest clusters should contain
the main text blocks (see Fig. 3b). We iterate over this sorted
list of clusters and label the contained blocks as Main text,
until we encounter either a large change in the average width
of blocks (larger than a threshold �width = 5), or a simul-
taneous change in font size and cluster size (the portion of
all document lines changes by more than �size = 0.1). The
reason for the second criterion is that main text may consist
of more than one font size (e.g., methods sections in biomed-
ical papers), but we include blocks of different font size only
if there is a substantial amount of text.

The flexibility of the clustering algorithm deals with small
disalignments, e.g., slightly indented blocks such as enumer-
ations or lists, but some layouts might require a tuning of the
threshold parameters. Main text blocks remain undetected
mainly if their width substantially deviates from the normal
column width, e.g., when text floats around a figure span-
ning 1.5 columns, or when the main text spans the whole
page width on the first page of the paper, while being set in
two columns for the remaining part. We also do not handle
equations or other elements that are embedded into the main
text flow.

5.4 Headings

The main text of a scientific article is typically hierarchi-
cally structured into sections and subsections. Here we aim
at extracting all text blocks containing these section headings
irrespective of their level in this hierarchical structure. Later,
in Sect. 6.2, we try to reconstruct this structure in the form
of a table of contents.

Fig. 4 Example pages with text blocks categorized into different
classes (denoted by different colors): decorations (red), captions (cyan),
main text (blue), headings (green), sparse lines (yellow), and tables
(orange). The first page contains meta-data blocks labelled with dif-

ferent colors. Furthermore, the postprocessed reading order is shown,
containing only those blocks that are part of the body text (headings
and main text)
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The detection of these section headings is based on the
previous labelling of main text blocks and uses additional
information provided by the block relations, reading order,
and block neighborhood. A necessary condition for a text
block to be considered as a heading is that it occurs either
immediately before a main text block in the reading order or
is the top neighbor of a main text block. The reason for incor-
porating both relations is that in some cases a heading does
not occur immediately before a main text block, even if it
is the direct top neighbor. Furthermore, a candidate heading
block has to be either left- or centre-aligned to the following
main text block. This is checked by testing if the left or center
X coordinates of the bounding boxes agree within some tol-
erance T (here, T = 5). Additionally, each of the following
conditions must be met:

(i) The text starts with either a number or an uppercase
character,

(ii) Apart from an optional numbering it consists of at least
one non-whitespace letter,

(iii) It has a maximum number of lines (here: 3),
(iv) The majority font size is at least as large as that for the

neighboring main text block, and
(v) The distance to the neighboring text block is lower than

a threshold (here: 4 times the size of a line of the current
heading block candidate).

If these conditions are satisfied for unlabelled blocks, they
are labelled as Heading. A main text block is allowed to be
relabelled, if in addition the majority font is bold or italic.

Headings can not only occur before a main text block,
but also immediately before another heading (in the case of
headings with different levels). To account for these cases we
repeat the detection algorithm and check blocks immediately
before or directly above another heading block. By varying
the number of passes of the algorithm over all blocks of the
document we can control the maximum number of directly
adjacent headings. Here, this value is set to 2.

Examples of detected headings are shown as green blocks
in Fig. 4.

5.5 Sparse blocks and tables

The remaining blocks contain various document elements
such as references, footnotes, formulas, and texts in figures
and tables. Most of these blocks share at least one of two
properties: (1) their width is substantially smaller than the
column width, or (2) there exists a gap between two consec-
utive words in the block that is larger than the average width
between two words in the main text. These properties have
been identified in [19] as conditions for so-called sparse lines,
a subset of the document relevant for table detection. There
the authors designed an algorithm for constructing lines from

the characters in the PDF and defined a line to be sparse if
either of the above conditions was met. We applied the same
conditions to our text blocks, except that we calculated the
average column width and average word space only from
blocks previously categorized as main text. We labelled a
block as sparse if its width was smaller than 2/3 of the aver-
age width of a main text block, or it contained a gap between
two consecutive words larger than two times they average
gap between words in main text blocks. To account for cor-
ner cases we also relabelled main text blocks as sparse blocks
if their average word gap was larger than two times the doc-
ument average. These thresholds were taken from [17].

Furthermore, we implemented a table boundary detection
algorithm similar to that presented in [19]. Starting from a
table caption (recognized by checking if it starts with a key-
word such as “Table”) neighboring sparse blocks (defined by
the block neighborhood) are labelled as table blocks if their
vertical distance does not exceed a threshold of 2.5 times the
average line height of the document main text. Restrictions
on the horizontal distance are only used if we identify the
current table as a single-column table, which is the case if
the caption block is left- or center-aligned to a column and its
width is smaller than the column width. For a single-column
table the labelling stops once a candidate sparse block does
not lie completely inside the current horizontal column bor-
ders.

The example pages of Fig. 4 show 3 tables where blocks
have been successfully labelled as table blocks (orange). The
first page contains a block that has been categorised as sparse
(yellow) because it contains large gaps between words.

Table boundary detection, identifying those text blocks
which belong to a table, is an important preprocessing step
for parsing the structure of the table and extracting its content.
This is a subject of future work and beyond the scope of this
paper.

5.6 Meta-data

In a scientific document specific text blocks contain meta-
data information about the published article, e.g., the title,
the journal in which it was published, or the abstract. To
detect these meta-data blocks, we reused previously pub-
lished work [13] which employs a supervised classification
approach that additionally takes the sequence of labels into
account. The meta-data blocks are categorised into the fol-
lowing types: Title, Journal, Author, Affiliation, Email, and
Abstract. The details of this approach are beyond the scope
of this paper; the interested reader is referred to [13]. The top
left panel in Fig. 4 shows an example page with text blocks
categorised into different types of meta-data. For author type
blocks the contained tokens are further classified into given
names, surnames, emails, and affiliations.
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6 Body text and table of contents extraction

Once the text blocks have been categorized we can now
extract the body text and the table of contents of the given
document. The body text is given by the sequence of sec-
tion headings and main text blocks in the extracted reading
order. The table of contents is determined by creating a tree
structure of headings using hierarchical clustering.

6.1 Body text extraction

The first step in extracting the body text from the docu-
ment is to post-process the reading order, which has been
originally determined from all blocks, to contain only sec-
tion headings and main text blocks. This is achieved by a
straightforward sequential filtering (see Fig. 4). Additionally,
we remove sections titled “Abstract”, “Acknowledgments”,
“References”, “Bibliography”, or “Supporting Information”
from the body text: once we encounter a heading with this
content we remove this block and all immediately follow-
ing main text blocks until the next heading block. The body
text is then composed by a simple concatenation of the con-
tents of the remaining blocks in the sequence of the reading
order.

In many documents words are hyphenated if they do not
fit on the current line, especially if the text layout is justified.
However, the hyphenation chars “-” should not be part of the
extracted body text. We resolve hyphenations by removing
hyphens “-” and concatenating the split word parts if they
are the result of a proper English hyphenation. For each line
of a main text block that ends with a hyphen we apply the
hyphenation on the concatenated word using a list of hyphen-
ation patterns taken from the TEX distribution, and if the line
split occurs at one of the proposed split points we resolve
the hyphenation. As we repeat this check across main text
blocks, hyphenations are also resolved across columns and
pages.

6.2 Table of contents extraction

The task of the table of contents (TOC) extraction is to recre-
ate the structure of the scientific article and to identify the
hierarchy of sections. The output of this process is a tree
of headings for the individual sections. We use the blocks
labelled as headings as the starting point for the TOC extrac-
tion. Our approach is divided into three stages (see Fig. 5 for
an example):

(i) Grouping of headings into different levels based on their
formatting,

(ii) Determining the heading levels based on ordering the
resulting groups, and

(iii) Using the sequence information within the article and
the ordering of groups to create a hierarchy.

The approach completely relies on unsupervised methods;
therefore, there is no need for training examples, and it also
should work independently of domain.

In the first stage of the algorithm we group headings of
similar formatting. We use the HAC clustering algorithm,
where the distance function is a weighted sum of the differ-
ences of the mean character height and of the mean number
of characters of two clusters. More precisely,

d(c1, c2) = |hc1 − hc2 |
min(hc1, hc2)

+ 0.1
|lc1 − lc2 |

max(lc1, lc2)
, (3)

where hci denotes the average height of a character and lci

the average character count of a heading in cluster ci . The
distance between two clusters is set to infinity if one of the
following criteria is met:

(i) Two headings are directly adjacent,
(ii) Either one of the clusters is made up exclusively upper-

case characters,
(iii) The difference in mean character heights differs by more

than max(stdev(hc1), stdev(hc2)) + 0.01, or
(iv) The level of the numbering that precedes the heading

text differs.

The input for the second stage is the list of clusters that
contain at least a single heading. These clusters are ordered
according to their assumed heading level using a pairwise
comparison function which outputs {−1, 0,+1} to indicate
the ordering. This comparing function operates according to
the following precedence rules:

(i) Number of prefix segments,
(ii) Difference in mean character height, and

(iii) Preference of all upper-case clusters.

The output then is a sequence of headings where the ranking
defines the heading level.

The final stage takes the ranked list and produces the final
TOC tree by using the information provided by the extracted
reading order. Starting from an empty tree with a single root
node all headings are iterated in the sequence of how they
appear within the article. The first heading is added as a
child to the root node. For every following heading we search
backwards until we find a heading with a higher heading
level and add it as a new child to this parent heading. If no
such parent heading is found, we add the heading as a new
child to the root node. By enforcing a valid tree hierarchy
this approach corrects some errors made during the first two
stages.
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List of headings in the reading order:

– Background
– Materials and methods
– Patients and Tissue Samples
– Methods
– Immunohistochemical Staining
– Statistical Analysis
– Results
– Expression of Nestin and CD133
– Correlation of Nestin and CD133 expression
– Prognostic implications of Nestin and CD133
– Discussion
– Abbreviations
– Competing interests
– Authors’ contributions

Clusters with assigned heading level:

Heading level 1:

– Background
– Materials and methods
– Methods
– Results
– Discussion
– Abbreviations
– Competing interests
– Authors’ contributions

Heading level 2:

– Patients and Tissue Samples
– Immunohistochemical Staining
– Statistical Analysis
– Expression of Nestin and CD133
– Correlation of Nestin and CD133 expression
– Prognostic implications of Nestin and CD133

Resulting table of contents:

– Background
– Materials and methods

– Patients and Tissue Samples
– Methods

– Immunohistochemical Staining
– Statistical Analysis

– Results
– Expression of Nestin and CD133
– Correlation of Nestin and CD133 expres-

sion
– Prognostic implications of Nestin and

CD133
– Discussion
– Abbreviations
– Competing interests
– Authors’ contributions

Fig. 5 This example shows the workflow of our algorithm for extract-
ing the table of contents of a specific scientific article from the biomed-
ical domain. First, all headings are collected (left) and clustered based
on their formatting. The resulting clusters are then sorted yielding a

heading level for each cluster (middle). Finally, the table of contents are
generated by creating a tree (right). The headings are processed in the
reading order and each heading is assigned as a child to the last heading
with a higher level (right)

7 Evaluation

In this section we present the evaluation of our processing
pipeline. First, we evaluate the quality of both the block
extraction and the block categorization on the GROTOAP
dataset, which consists of labelled segmentations of scien-
tific documents into zones. Next, the performance of the
main text and heading extraction is assessed on the PubMed
dataset, which provides a structured XML file along with
each PDF document. The main text evaluation is based on a
modified edit distance and indirectly measures the quality of
the detected reading order. Finally, we determine the correct-
ness of the extracted tables of contents on the same dataset
using an edit distance measure on trees.

7.1 Block extraction

A ground truth dataset for evaluating the segmentation of
document pages into contiguous text blocks has recently been
made available: the GROTOAP dataset [29] consists of 113
documents from various open access journals in digital form
as well as their geometric hierarchical structure in XML for-
mat. For each word, line, and zone (as the analogue to a block
is called there) the corresponding bounding box is given in
terms of its x and y coordinates on the page. In contrast
to previously available datasets which are usually based on
scanned document images, the GROTOAP dataset is to the
best of our knowledge the first that provides this informa-
tion for born-digital documents. In a related paper the same
authors use this dataset as part of a similar meta-data extrac-
tion process [28], however, consisting of a different block
extraction method, a modified Docstrum algorithm [10]. In
the following, we present the evaluation of our block extrac-

tion algorithm pipeline on this dataset and also compare our
results to that paper.

We followed the approach in [28] and determined for each
object in the ground truth (word, line, or zone) whether it was
correctly recognized by our block extraction algorithm, or
whether it was split, merged, or not found at all. This decision
was made by comparing the sets of non-whitespace charac-
ters that the corresponding objects contained. We ignored
whitespace characters in this comparison to account for the
fact that in some PDF files spaces between words are not
expressed as separate characters. In order to determine the
corresponding extracted object for a given ground truth object
in the first place, we applied a naive search procedure to deter-
mine that object of the same type (word, line, or zone/block)
that has the maximum geometric overlap to the ground truth
object. This is reasonable in terms of computational effi-
ciency since we can restrict the search to objects on the same
page.

Given character sets ST and SE contained by the ground
truth and extracted objects, respectively, we applied the fol-
lowing rules to determine the segmentation outcome:

Condition Outcome

ST = SE Recognized

ST ⊂ SE Merged

ST ∩ SE = ∅ Not found

else Split

An object is considered to be recognized if both charac-
ter sets are exactly the same. If the set of characters in the
ground truth object is a proper subset of the characters in the

123

Author's personal copy



Unsupervised document structure analysis 93

Fig. 6 Evaluation of our approach to block extraction on the GRO-
TOAP dataset. The bar plot shows the percentage of ground truth objects
that were recognized, split, merged, or not found, respectively

corresponding extracted object it is said to be merged. On
the other hand, a split occurs if characters of one object in
the ground truth belong to more than one extracted object. It
is worth noting that with this evaluation procedure the merg-
ing of n original zones to one extracted block counts as n
merges; however, the splitting of a single ground truth zone
into n blocks accounts for only one split. Finally, it may also
happen that no corresponding (i.e., overlapping) extracted
object can be found, or the sets of characters are completely
disjoint. In most cases this can be attributed to errors in the
underlying text extraction software, which sometimes yields
wrong characters or bounding boxes (e.g., rotations applied
to labels in figures). Moreover, visual inspection showed that
many incorrectly recognized objects occur inside tables and
figures, where neighboring table cells might be merged to
single lines, axis labels of figures to single words, or blocks
might span individual table cells or complete columns or
tables. We, therefore, excluded all ground truth zones with
one of the labels table, figure, or unknown from the following
analysis.

The results of the block extraction evaluation are shown in
Fig. 6 and Table 1. The fraction of correctly recognized lines
and words are both above 97 %. Also the majority of blocks
is recognized; however, the numbers of splits and merges are
relatively high. For example, headers or footers were some-
times merged with adjacent page numbers or related deco-
rations. The high number of split blocks mostly results from
the fact that our block extraction algorithm tends to split long
blocks of main text into multiple parts, especially when there
is a increased line distance due to a superscript or subscript.
Furthermore, in the ground truth dataset headings were often
combined with the succeeding main text paragraph. In our
pipeline these two parts were deliberately split to endow fur-
ther post processing such as table of contents extraction.

A closer inspection of the GROTOAP dataset further
revealed that individual words in the ground truth sometimes
contained adjacent punctuations, like “.”, “,”, “(”, or “)”, and
sometimes did not, while our block extraction usually yielded

Table 1 Detailed evaluation of the block extraction stage across all 113
documents of the GROTOAP dataset and comparison to the approach
provided by the PDFBox library

Our approach

Total Recognized (%) Split (%)

Blocks 8,308 6,070 (73.06) 1,508 (18.15)

Lines 65,361 64,124 (98.11) 582 (0.89)

Words 560,012 543,491 (97.05) 14,650 (2.62)

Merged (%) Not found (%)

Blocks 565 (6.80) 165 (1.99)

Lines 457 (0.70) 198 (0.30)

Words 1,205 (0.22) 666 (0.12)

PDFBox

Total Recognized (%) Split (%)

Blocks 8,308 5,040 (60.66) 1,799 (21.65)

Lines 65,361 63,353 (96.93) 665 (1.02)

Words 560,012 557,385 (99.53) 1,506 (0.27)

Merged (%) Not found (%)

Blocks 1,465 (17.63) 4 (0.05)

Lines 1,333 (2.04) 10 (0.02)

Words 1,050 (0.19) 71 (0.01)

only the actual word. To account for these spurious splits
and merges we ran another evaluation where we compared
only character sets consisting of letters and digits, resulting
in 98.14 % correctly recognized words, 98.60 % lines, and
74.35 % blocks. Similar effects occurred for superscripts,
footnote marks, and apostrophes. Another crucial issue con-
cerned the correct handling of ligatures “fi” or “fl”, which
appeared as single characters in the ground truth, but were
correctly normalized by our processing pipeline. Diacritic
characters, such as umlauts or letters with accents, were
another source of spurious splits since they were sometimes
represented as a separate pair of characters in the ground
truth.

We also evaluated the heuristics that PDFBox provides to
detect words, lines, and paragraphs during the conversion of
PDF into plain text. Based on the statistics of horizontal gaps
between characters it inserts spaces between words, if nec-
essary; it checks for line breaks based on the vertical overlap
of neighboring characters and inserts paragraph breaks based
on the distance of lines and their indentations. At this stage
PDFBox provides no geometrical information about these
compound objects, so instead for searching the block, line,
or word with the maximum geometric overlap, we performed
the evaluation based on text content alone. For each zone,
line, or word in the ground truth we determined the para-
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Table 2 Contingency table of
blocks labelled as meta-data
evaluated on the GROTOAP
dataset

Columns correspond to our
labels, rows correspond to
GROTOAP labels. Boldface
entries denote equivalent
labellings

Title Journal Author Affiliation Email Abstract

Abstract 1 0 0 0 0 195

Body 0 0 0 0 0 3

Correspondence 0 0 0 0 31 0

Unknown 0 0 0 1 0 0

Copyright 0 0 0 0 6 0

Author 0 0 102 0 1 0

Title 109 0 1 0 0 0

Dates 0 0 0 0 1 0

Bib_info 0 1 0 0 0 0

Affiliation 1 0 0 96 1 0

Total 111 1 103 97 40 198

graph, line, or word that had the greatest overlap in terms of
the longest common subsequence of their textual contents. If
there were more than one candidate with the same overlap we
selected the one with the smallest edit distance. This resulted
in the correct recognition of 60.66 % of the zones, 96.93 % of
the lines, and 99.53 % of the words. The recognition rate for
zones and lines is lower than for our block extraction algo-
rithm (see Table 1). One reason for the low performance on
zones is that PDFBox extracts individual paragraphs, which
typically have a finer granularity than the ground truth zones.

In [28] the authors reported that 90.74 % of the zones,
98.56 % of the lines, and 99.49 % of the words were recog-
nized correctly. However, the above considerations suggest
that the achieved performance very much depends on the
exact definition of zones or blocks, lines, and words (e.g.,
does a period belong to the preceding word? Is a table a
single block? Does a heading belong in the same block as
its successive paragraph?). Also the comparison of objects
based on their characters requires a correct encoding of these
characters. Another possibility, which we did not pursue fur-
ther, would be to compare segmentation objects based on
their geometric information (i.e., bounding boxes) only.

7.2 Block categorization

Since the GROTOAP dataset also contains a labelling of
each block, we evaluate the block categorization on the same
dataset as the block extraction in the previous section. This
dataset provides a rather fine-grained labelling of the various
text blocks (see row headings in Tables 2 and 3). Since their
block extraction method is different from ours it sometimes
yields a different granularity of text blocks: blocks might be
merged or split compared to the ground truth segmentation.
For the alignment of our extracted labels with the ground truth
labels we choose the simple strategy that for each extracted
block we search for the corresponding ground truth zone
that has the maximum overlapping area and compare the two
labels. Note, that this might result in smaller ground truth

zones not being used for comparison at all, or larger zones
to be compared multiple times.

The resulting contingency tables are shown in Table 2 for
the meta-data blocks and in Table 3 for the remaining blocks.
It can be seen that the meta-data extraction, which is based
on a supervised classification problem [13], achieves a good
performance since most blocks have a corresponding ground
truth zone with a similar label. Decoration blocks are mostly
paired with zones labelled as page_number or bib_info (usu-
ally the journal name or other publishing information), which
typically occur in headers or footers of documents. Decora-
tions are mislabelled if a block with similar content acciden-
tally repeats at almost the same position on neighboring pages
(e.g., equation numbers, table elements). Caption blocks are
mostly assigned to figure and table captions; blocks of the
body text are sometimes erroneously labelled if their text
starts with one of the caption keywords. Main text blocks
largely correspond to zones labelled body; depending on the
font size, the reference section might be part of the main
text or not. Most headings also overlap with a body zone;
the reason for that is that in the ground truth dataset head-
ings are typically merged to the body zone of the follow-
ing paragraph. A large part, but not all of the sparse blocks
inside tables have been correctly identified as table blocks,
indicating room for improvement by further work on table
recognition. As expected, the remaining sparse blocks are
mostly composed of small text blocks inside figures, equa-
tions and their labels, and parts of the main text which are
aligned differently from the standard columns, e.g., lists or
insets.

7.3 Body text and headings

For the evaluation of the quality of the body text and head-
ings extraction we use a dataset of 1,000 randomly selected
documents from PubMed11, a free database created by the

11 http://www.ncbi.nlm.nih.gov/pubmed/
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Table 3 Contingency table of
blocks evaluated on the
GROTOAP dataset

Columns correspond to our
labels, rows correspond to
GROTOAP labels. Boldface
entries denote equivalent
labellings
a In the ground truth dataset,
headings are part of the body
zone of the following paragraph
b We do not yet detect special
reference blocks

Decoration Caption Main Heading Table Sparse Unlabelled

Abstract 0 0 6 1 0 50 25

Body 6 25 3,707 1,188a 8 377 278

Keywords 0 0 2 1 0 6 17

Correspondence 0 0 0 0 0 9 4

Figure_caption 0 437 0 0 2 106 45

Table_caption 2 167 0 0 8 14 5

Equation_label 10 0 0 0 0 183 0

Page_number 819 0 0 0 0 26 0

Unknown 3 3 76 66 345 366 377

Table 14 1 2 4 3,700 1, 790 46

Copyright 5 0 7 0 0 75 90

Type 1 0 0 0 0 101 1

Author 0 0 0 2 0 4 3

Editor 0 0 0 0 0 18 1

References 2 0 379b 37 0 375 516

Title 0 0 0 1 0 2 6

Figure 2 1 0 0 7 3, 706 89

Dates 0 0 0 0 0 7 64

Equation 0 0 2 32 0 491 3

Bib_info 1158 0 2 3 0 115 59

Affiliation 0 0 5 4 0 48 44

Total 2, 022 634 4, 188 1, 339 4, 070 7, 869 1, 673

US National Library of Medicine holding full-text arti-
cles from the biomedical domain together with a standard
XML markup that rigorously annotates the complete con-
tent of the published document, in particular the metadata,
the section headings, and the body text. The documents con-
tained in this database are very diverse. Most of the docu-
ments are research articles, but there is also a wide range
of different article types, including book reviews and meet-
ing reports. Table 4 shows the distribution of article types
for the selected subset of 1,000 documents. Furthermore,
the documents vary strongly in their layout, ranging from
more book-style single column layouts to the standard two-
column layouts of scientific articles and layouts with three or
more columns of review or news articles. In total, the 1,000
selected documents are published in 220 unique journal titles;
the most frequently occurring journal titles are shown in
Table 4.

First, we evaluate the quality of the extracted main text
(the content of heading and main text blocks in the read-
ing order, see Sect. 6) by comparing it to the concate-
nated string of characters contained in the body part of
the ground truth XML. We remove all whitespace charac-
ters in both strings and determine their similarity by a vari-
ant of the Levenshtein distance that counts the number of
insertions and deletions (but not of substitutions) necessary
to transform the extracted text into the actual text. Given

these numbers we define precision and recall for the main
text as

Ptext = 1 − D

max(N , M)
and

Rtext = 1 − I

max(N , M)
, (4)

respectively, where D and I are the number of deletions
and insertions and N and M are the lengths of the two
strings. Intuitively, a low number of deletions means that
most of the extracted text is contained in the true body
text in the right order, thus having a high precision. Anal-
ogously, if the number of insertions is small most of the true
body text is extracted, leading to a high recall. This evalua-
tion not only depends on the correct labelling of main text
and heading blocks, but also the correct reading order, as
shuffling text pieces results in reduced precision and recall
values.

Since the dataset contains a range of different article types,
including book reviews, abstracts, and product presentations,
we included only those documents into the analysis which
contain a body text and at least one section header. It can
be seen in Table 5 that most of the main text is extracted
correctly. Insertions (decreased recall) typically occur when
main text blocks are miscategorized as, e.g., captions or
sparse blocks. A typical case for deletions (decreased pre-
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Table 4 Characteristics of the PubMed dataset consisting of 1,000 ran-
domly selected documents

Article type Count Journal title Count

Research article 759 Environmental Health
Perspectives

69

Review article 75 The Yale Journal of
Biology and Medicine

38

Book review 45 Medical History 28

Abstract 15 PLoS ONE 24

News 13 Nucleic Acids Research 23

Editorial 13 BMC Bioinformatics 16

Case report 12 BMC Public Health 16

Product review 11 BMC Genomics 15

Letter 9 The Ulster Medical Journal 15

Meeting report 7

Brief report 7

Correction 6

Commentary 4

Other 24

The left table shows the diverse distribution of article types as speci-
fied by the provided metadata, the right table lists the most frequently
occurring journal titles (in total there were 220 unique journals)

cision) is that parts of the reference section get included into
the main text although they are not part of the ground truth
text. We also evaluated the effect of resolving hyphenations
(“raw” in Table 5) and found that it is below 1 % in precision
and obviously does not affect recall.

For the evaluation of the extracted headings we collect
the texts from the blocks labelled as heading and compute
standard precision and recall of the ground truth headings. In
the PubMed dataset headings are contained within the title tag
of a sec section of the ground truth XML. Table 5 shows that
performance values are around 80 %. One source of error
here is that the ground truth does not distinguish between
normal section headings and paragraph headings, which we
do not extract since they are not offset from, but part of the
following main text block. In [9] performance values of over
90 % are reported for heading detection, but their method is
based on a combination of classification and clustering and is
evaluated on a dataset of books which might be less diverse
than our set of scholarly articles.

We compared our performance to a state-of-the-art sys-
tem for logical structure detection, SectLabel [20] from the
ParsCit package12. This system takes a raw text file as input
and uses a trained CRF model to classify individual lines into
different categories, in particular bodyText, sectionHeader,
subsectionHeader, and subsubsectionHeader. We applied
SectLabel on the output of two standard pdf-to-text tools,

12 http://wing.comp.nus.edu.sg/parsCit/

Table 5 Performance of main text and heading extraction compared
to the output of ParsCit (SectLabel) evaluated on a random subset of
1,000 documents from the PubMed dataset

Body text

Micro-

Precision Recall F1

Main text 0.873 0.969 0.918

Main text (raw) 0.871 0.969 0.917

ParsCit (PDFBox) 0.741 0.963 0.838

ParsCit (Poppler) 0.711 0.926 0.804

Macro-

Precision Recall F1

Main text 0.950 0.961 0.945

Main text (raw) 0.947 0.961 0.944

ParsCit (PDFBox) 0.787 0.960 0.857

ParsCit (Poppler) 0.757 0.925 0.827

Headings

Micro-

Precision Recall F1

Headings 0.748 0.771 0.760

ParsCit (PDFBox) 0.403 0.227 0.290

ParsCit (Poppler) 0.417 0.219 0.287

Macro-

Precision Recall F1

Headings 0.837 0.768 0.779

ParsCit (PDFBox) 0.392 0.269 0.299

ParsCit (Poppler) 0.421 0.259 0.300

Main text performance is defined in terms of the relative number of
insert and delete operations necessary to reproduce the ground truth text.
“Raw” indicates performance without hyphenation resolution. ParsCit
requires raw text as input, generated by PDFBox and Poppler

PDFBox and Poppler13, and evaluated the extracted main
text and section headings on the same subset of the PubMed
dataset. Table 5 shows the performance values obtained on
both the main text and the heading extraction. On the main
text, which is obtained by concatenating the contents of the
bodyText tags, a reasonable recall is achieved; however, typ-
ically more than the actual body text is categorized as such.
The performance on headings is substantially lower.

For these comparisons we used the off-the-shelf model of
the SectLabel system that is provided as part of their software

13 http://poppler.freedesktop.org/
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Table 6 Performance of the table of contents extraction on the PubMed
dataset measured as the average tree edit distance

Error types involved TOC ext. TOC ext.
Block cat.

TOC ext. Block
cat. Block ext.

(iii) (ii) and (iii) (i)–(iii)

Mean tree edit distance 0.25 2.15 5.18

Number of articles 308 308 633

ParsCit
(Poppler)

ParsCit
(PDFBox)

Mean tree edit distance 13.59 13.42

Number of articles 633 633

Different scenarios highlight the influence of different types of errors
(see text). The best performance is achieved when errors introduced
by the block extraction and the categorization stages are removed. The
results are compared to the TOC created from the headings extracted by
ParsCit (SectLabel) applied to the text output of PDFBox and Poppler

distribution, following the practice of other researchers [2,3,
11]. This model is trained on a number of scientific papers
from the field of computer science that use different style
guidelines [20].

7.4 Table of contents

For the table of contents evaluation we use the same dataset
as for the evaluation of the heading labelling. We filter the test
articles from the PubMed dataset to contain only documents
with available section information and no duplicate heading
names, resulting in 633 documents. To measure the quality of
the TOC extraction we compute the minimal tree edit distance
in comparison to the heading tree from PubMed, calculated
by the Zhang–Shasha algorithm14 [31]. A distance of zero
indicates that the algorithm exactly recreated the TOC tree.

Errors in the TOC extraction might originate in

(i) The block extraction stage (i.e., blocks which do not
exactly contain the heading text),

(ii) The block categorization stage (i.e., heading blocks
which are not labelled as such), or

(iii) In errors introduced by the TOC extraction itself.

In the evaluation we allow up to four extra characters at the
front (or back) of the extracted heading, as for example the
heading numbering is sometimes not part of the ground truth.
In Table 6 the achieved performance of our approach is com-
pared to the ParsCit algorithm using its default settings. We
report three runs for our system to demonstrate the impact of
the different types of errors. For about half of the documents
(305) all heading blocks have been correctly extracted. Here

14 https://github.com/timtadh/zhang-shasha

our TOC extraction algorithm produces results very close to
the ground truth with an average edit distance of consider-
ably less than 1 (the edit distance was 0 for about 89 % of
these articles). Including errors from the block categorization
stage raises the average edit distance by about 2, and errors
introduced by the block extraction stage again add roughly
the same amount.

As a comparison we reconstructed the table of contents
from the headings extracted by the SectLabel/ParsCit sys-
tem applied the initial 633 documents. Even with all sources
of errors considered, the performance of our system is con-
siderably better than using the ParsCit approach.

Previous work on ToC extraction focused on parsing the
dedicated table of contents section of a book [5,9], which is a
different problem than reconstructing it from the actual con-
tent. Furthermore, the layout of a scientific article is much
denser than that of a book, thus making the ToC extrac-
tion more difficult. The book structure extraction competition
held at ICDAR 2013 [6] also targeted the reconstruction of the
table of contents of digitised books. However, only few par-
ticipants investigated the full content, apart from the printed
ToC, and the relatively low performance values emphasize
that this is a rather hard problem. To the best of our knowl-
edge, our approach is the first that tries to reconstruct the
table of contents from the full content of scientific articles.

8 Discussion

We have developed an unsupervised processing pipeline for
the analysis of the structure of a scientific article given as a
PDF file. Starting from the raw character stream provided by
the open-source PDFBox library, we first extract contiguous
text blocks that serve as the basic physical building blocks
of the document. In the logical layout analysis these blocks
are then ordered by the reading order and categorised into
different document parts. Finally, we use this information to
extract the body text and the table of contents of the given
article.

All stages of our pipeline make prominent use of heuristics
and unsupervised machine learning techniques. In particular,
clustering algorithms such as k-means and HAC are used in
the block extraction stage, the detection of the main text, and
the creation of the table of contents tree. Unsupervised tech-
niques are especially interesting because of their flexibility
to adapt to new input statistics without the need to retrain a
model. This could be useful in many digital library scenarios
due to the changing and dynamic nature of corpora.

One major problem with PDFBox and other tools is that
the information provided about individual characters in the
PDF is inherently noisy, for example, height and width infor-
mation might be wrong, or information about the font of some
characters might be missing. This implicit noise affects every
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stage of our system, and we believe that its performance could
be considerably improved if this low-level information would
be more reliable. This has been observed by other researchers
[17,18], who often use solely geometric information.

For the evaluation of our system we selected a random
subset of the PubMed database, which consists of a variety
of different document types and formats. This diversity is rep-
resentative for the domain of scientific articles and demon-
strates the generalization of our techniques. Our results shows
that the performance of our system, which makes use of the
formatting and layout of the article, is considerably better
than the SectLabel algorithm from the ParsCit system, which
operates on plain text only and which we plugged in with the
off-the-shelf CRF model. It has already been shown in [20]
that the inclusion of rich document features would signifi-
cantly improve the detection of the logical structure. Another
reason for the large performance deterioration could be that
the statistics of PubMed documents are substantially differ-
ent from those documents for which the SectLabel system
was trained. A similar observation was made in [26], where
this system is also discussed.

In future work we plan to extend our system with the detec-
tion of further document parts, such as algorithms, figure
regions, footnotes, or equations. We have already achieved
good results on reference extraction [14], where we detected
the reference section within a paper, segmented it into indi-
vidual citations, and classified the individual tokens of the
reference string into author, title, journal, etc. The inclusion
of formatting and layout information allowed us to improve
the performance over existing approaches. Another interest-
ing problem that we would like to tackle in the future is the
parsing of tables by recreating the tabular structure [30]. The
extraction of relations or facts contained therein is of par-
ticular interest for information retrieval scenarios. Finally,
we believe that a comparison of our unsupervised pipeline
to a fully supervised classification model would gain fur-
ther valuable insight into the problem of document structure
analysis.
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